If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+3=-13x
We move all terms to the left:
3x^2+3-(-13x)=0
We get rid of parentheses
3x^2+13x+3=0
a = 3; b = 13; c = +3;
Δ = b2-4ac
Δ = 132-4·3·3
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{133}}{2*3}=\frac{-13-\sqrt{133}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{133}}{2*3}=\frac{-13+\sqrt{133}}{6} $
| 244=-x+294 | | -6k+6=-5k+3 | | x+1.4=2.8 | | 3x^2+4=-13 | | 3w─6=2w–1 | | -y+75=179 | | 548=a-225 | | 5x^2+45x=90 | | 4.9=h–3.2= | | a+548=225 | | 3(x-5)=-9} | | 25x+150=450 | | 6+w=24 | | a+225=548 | | 12m+3/8=-2m | | 5y+30=20 | | 3x+2-8x=4 | | b+3b+3=b+3b-8+2 | | 25x+150=250 | | 4.9=h–3.2 | | 2d^2-18=0 | | x+36.55=123.45 | | 18=x+0.02x | | 25^(3x+2)=125^(x+1) | | 50=-25+m | | 44j+j+6+9=5(9j+3) | | 18=x+0.02 | | 36.55x=123.45 | | t-21=40 | | 4x+6(-1)=22 | | -18=x+3x-10 | | s+4/3=s |